digraph G {
0 [labelType="html" label="<br><b>TakeOrderedAndProject</b><br><br>"];
subgraph cluster1 {
isCluster="true";
label="WholeStageCodegen (2)\n \nduration: total (min, med, max (stageId: taskId))\n252 ms (0 ms, 1 ms, 28 ms (stage 7.0: task 65))";
2 [labelType="html" label="<b>HashAggregate</b><br><br>time in aggregation build total (min, med, max (stageId: taskId))<br>8 ms (0 ms, 0 ms, 8 ms (stage 7.0: task 65))<br>peak memory total (min, med, max (stageId: taskId))<br>498.0 MiB (256.0 KiB, 256.0 KiB, 64.3 MiB (stage 7.0: task 68))<br>number of output rows: 7<br>avg hash probe bucket list iters (min, med, max (stageId: taskId)):<br>(1, 1, 1 (stage 7.0: task 68))"];
}
3 [labelType="html" label="<b>Exchange</b><br><br>shuffle records written: 14<br>shuffle write time total (min, med, max (stageId: taskId))<br>14 ms (0 ms, 0 ms, 7 ms (stage 6.0: task 46))<br>records read: 14<br>local bytes read total (min, med, max (stageId: taskId))<br>561.0 B (0.0 B, 0.0 B, 81.0 B (stage 7.0: task 65))<br>fetch wait time total (min, med, max (stageId: taskId))<br>0 ms (0 ms, 0 ms, 0 ms (stage 7.0: task 68))<br>remote bytes read total (min, med, max (stageId: taskId))<br>566.0 B (0.0 B, 0.0 B, 81.0 B (stage 7.0: task 68))<br>local blocks read: 7<br>remote blocks read: 7<br>data size total (min, med, max (stageId: taskId))<br>560.0 B (0.0 B, 0.0 B, 280.0 B (stage 6.0: task 46))<br>shuffle bytes written total (min, med, max (stageId: taskId))<br>1127.0 B (0.0 B, 0.0 B, 567.0 B (stage 6.0: task 46))"];
subgraph cluster4 {
isCluster="true";
label="WholeStageCodegen (1)\n \nduration: total (min, med, max (stageId: taskId))\n49.8 s (763 ms, 2.7 s, 3.5 s (stage 6.0: task 44))";
5 [labelType="html" label="<b>HashAggregate</b><br><br>time in aggregation build total (min, med, max (stageId: taskId))<br>49.5 s (758 ms, 2.7 s, 3.4 s (stage 6.0: task 44))<br>peak memory total (min, med, max (stageId: taskId))<br>5.0 MiB (256.0 KiB, 256.0 KiB, 256.0 KiB (stage 6.0: task 45))<br>number of output rows: 14"];
6 [labelType="html" label="<br><b>Project</b><br><br>"];
7 [labelType="html" label="<b>Filter</b><br><br>number of output rows: 2,202"];
}
8 [labelType="html" label="<b>Scan csv </b><br><br>number of files read: 7<br>metadata time: 0 ms<br>size of files read: 2.2 GiB<br>number of output rows: 22,400,728"];
2->0;
3->2;
5->3;
6->5;
7->6;
8->7;
}
9
TakeOrderedAndProject(limit=21, orderBy=[trip_date#93 ASC NULLS FIRST], output=[trip_date#93,trip_count#135])
HashAggregate(keys=[trip_date#93], functions=[count(1)])
WholeStageCodegen (2)
Exchange hashpartitioning(trip_date#93, 200), true, [id=#82]
HashAggregate(keys=[trip_date#93], functions=[partial_count(1)])
Project [date_format(cast(tpep_pickup_datetime#40 as timestamp), yyyy-MM-dd, Some(GMT)) AS trip_date#93]
Filter (((((isnotnull(fare_amount#47) AND isnotnull(trip_distance#43)) AND (cast(fare_amount#47 as int) > 50)) AND (cast(trip_distance#43 as int) < 1)) AND (date_format(cast(tpep_pickup_datetime#40 as timestamp), yyyy-MM-dd, Some(GMT)) >= 2023-02-01)) AND (date_format(cast(tpep_pickup_datetime#40 as timestamp), yyyy-MM-dd, Some(GMT)) <= 2023-02-07))
WholeStageCodegen (1)
FileScan csv [tpep_pickup_datetime#40,trip_distance#43,fare_amount#47] Batched: false, DataFilters: [isnotnull(fare_amount#47), isnotnull(trip_distance#43), (cast(fare_amount#47 as int) > 50), (cas..., Format: CSV, Location: InMemoryFileIndex[s3a://data-repository-bkt/ECS765/nyc_taxi/yellow_tripdata/2023], PartitionFilters: [], PushedFilters: [IsNotNull(fare_amount), IsNotNull(trip_distance)], ReadSchema: struct<tpep_pickup_datetime:string,trip_distance:string,fare_amount:string>
== Parsed Logical Plan ==
GlobalLimit 21
+- LocalLimit 21
+- Project [cast(trip_date#93 as string) AS trip_date#134, cast(trip_count#129L as string) AS trip_count#135]
+- Sort [trip_date#93 ASC NULLS FIRST], true
+- Aggregate [trip_date#93], [trip_date#93, count(1) AS trip_count#129L]
+- Filter ((trip_date#93 >= 2023-02-01) AND (trip_date#93 <= 2023-02-07))
+- Project [tpep_pickup_datetime#40, tpep_dropoff_datetime#41, passenger_count#42, trip_distance#43, PULocationID#44, DOLocationID#45, payment_type#46, fare_amount#47, extra#48, mta_tax#49, tip_amount#50, tolls_amount#51, total_amount#52, congestion_surcharge#53, airport_fee#54, taxi_type#55, date_format(cast(tpep_pickup_datetime#40 as timestamp), yyyy-MM-dd, Some(GMT)) AS trip_date#93]
+- Filter ((cast(fare_amount#47 as int) > 50) AND (cast(trip_distance#43 as int) < 1))
+- Relation[tpep_pickup_datetime#40,tpep_dropoff_datetime#41,passenger_count#42,trip_distance#43,PULocationID#44,DOLocationID#45,payment_type#46,fare_amount#47,extra#48,mta_tax#49,tip_amount#50,tolls_amount#51,total_amount#52,congestion_surcharge#53,airport_fee#54,taxi_type#55] csv
== Analyzed Logical Plan ==
trip_date: string, trip_count: string
GlobalLimit 21
+- LocalLimit 21
+- Project [cast(trip_date#93 as string) AS trip_date#134, cast(trip_count#129L as string) AS trip_count#135]
+- Sort [trip_date#93 ASC NULLS FIRST], true
+- Aggregate [trip_date#93], [trip_date#93, count(1) AS trip_count#129L]
+- Filter ((trip_date#93 >= 2023-02-01) AND (trip_date#93 <= 2023-02-07))
+- Project [tpep_pickup_datetime#40, tpep_dropoff_datetime#41, passenger_count#42, trip_distance#43, PULocationID#44, DOLocationID#45, payment_type#46, fare_amount#47, extra#48, mta_tax#49, tip_amount#50, tolls_amount#51, total_amount#52, congestion_surcharge#53, airport_fee#54, taxi_type#55, date_format(cast(tpep_pickup_datetime#40 as timestamp), yyyy-MM-dd, Some(GMT)) AS trip_date#93]
+- Filter ((cast(fare_amount#47 as int) > 50) AND (cast(trip_distance#43 as int) < 1))
+- Relation[tpep_pickup_datetime#40,tpep_dropoff_datetime#41,passenger_count#42,trip_distance#43,PULocationID#44,DOLocationID#45,payment_type#46,fare_amount#47,extra#48,mta_tax#49,tip_amount#50,tolls_amount#51,total_amount#52,congestion_surcharge#53,airport_fee#54,taxi_type#55] csv
== Optimized Logical Plan ==
GlobalLimit 21
+- LocalLimit 21
+- Project [trip_date#93, cast(trip_count#129L as string) AS trip_count#135]
+- Sort [trip_date#93 ASC NULLS FIRST], true
+- Aggregate [trip_date#93], [trip_date#93, count(1) AS trip_count#129L]
+- Project [date_format(cast(tpep_pickup_datetime#40 as timestamp), yyyy-MM-dd, Some(GMT)) AS trip_date#93]
+- Filter (((((isnotnull(fare_amount#47) AND isnotnull(trip_distance#43)) AND (cast(fare_amount#47 as int) > 50)) AND (cast(trip_distance#43 as int) < 1)) AND (date_format(cast(tpep_pickup_datetime#40 as timestamp), yyyy-MM-dd, Some(GMT)) >= 2023-02-01)) AND (date_format(cast(tpep_pickup_datetime#40 as timestamp), yyyy-MM-dd, Some(GMT)) <= 2023-02-07))
+- Relation[tpep_pickup_datetime#40,tpep_dropoff_datetime#41,passenger_count#42,trip_distance#43,PULocationID#44,DOLocationID#45,payment_type#46,fare_amount#47,extra#48,mta_tax#49,tip_amount#50,tolls_amount#51,total_amount#52,congestion_surcharge#53,airport_fee#54,taxi_type#55] csv
== Physical Plan ==
TakeOrderedAndProject(limit=21, orderBy=[trip_date#93 ASC NULLS FIRST], output=[trip_date#93,trip_count#135])
+- *(2) HashAggregate(keys=[trip_date#93], functions=[count(1)], output=[trip_date#93, trip_count#129L])
+- Exchange hashpartitioning(trip_date#93, 200), true, [id=#82]
+- *(1) HashAggregate(keys=[trip_date#93], functions=[partial_count(1)], output=[trip_date#93, count#139L])
+- *(1) Project [date_format(cast(tpep_pickup_datetime#40 as timestamp), yyyy-MM-dd, Some(GMT)) AS trip_date#93]
+- *(1) Filter (((((isnotnull(fare_amount#47) AND isnotnull(trip_distance#43)) AND (cast(fare_amount#47 as int) > 50)) AND (cast(trip_distance#43 as int) < 1)) AND (date_format(cast(tpep_pickup_datetime#40 as timestamp), yyyy-MM-dd, Some(GMT)) >= 2023-02-01)) AND (date_format(cast(tpep_pickup_datetime#40 as timestamp), yyyy-MM-dd, Some(GMT)) <= 2023-02-07))
+- FileScan csv [tpep_pickup_datetime#40,trip_distance#43,fare_amount#47] Batched: false, DataFilters: [isnotnull(fare_amount#47), isnotnull(trip_distance#43), (cast(fare_amount#47 as int) > 50), (cas..., Format: CSV, Location: InMemoryFileIndex[s3a://data-repository-bkt/ECS765/nyc_taxi/yellow_tripdata/2023], PartitionFilters: [], PushedFilters: [IsNotNull(fare_amount), IsNotNull(trip_distance)], ReadSchema: struct<tpep_pickup_datetime:string,trip_distance:string,fare_amount:string>